JACS

OURNAL OF THE AMERICAN CHEMICAL SOCIETY

Subscriber access provided by American Chemical Society

Communication

The Synthesis of (-)-Isodomoic Acid C
Jonathan Clayden, Faye E. Knowles, and lan R. Baldwin
J. Am. Chem. Soc., 2005, 127 (8), 2412-2413« DOI: 10.1021/ja042415g « Publication Date (Web): 05 February 2005
Downloaded from http://pubs.acs.org on March 24, 2009

OMe 0
PN Ho,c— 4 .—coH
Ph™ 'N ™
2

N
N— 2 H3;O* 0= >N7"Ph H
- Ph J\Ph isodomoic acid C

@)

More About This Article

Additional resources and features associated with this article are available within the HTML version:

. Supporting Information

. Links to the 15 articles that cite this article, as of the time of this article download
. Access to high resolution figures

. Links to articles and content related to this article

. Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

ACS Publications

High quality. High impact. Journal of the American Chemical Society is published by the American Chemical
Society. 1155 Sixteenth Street N.W., Washington, DC 20036


http://pubs.acs.org/doi/full/10.1021/ja042415g

JIAIC

S

COMMUNICATIONS

Published on Web

02/05/2005

The Synthesis of ( —)-Isodomoic Acid C

Jonathan Clayden,*' Faye E. Knowles, and lan R. Baldwin*

School of Chemistry, Upérsity of Manchester, Oxford Road, Manchester M13 9PL, U.K., and
GlaxoSmithKline Medicines Research Centre, Gunnels Wood Roa@ndge, Herts. SG1 2NY, U.K.

Received December 17, 2004; E-mail: j.p.clayden@manchester.ac.uk

Isodomoic acid C1! is a member of a 10-strong familyof
isomers of domoic aci@,? all of which are cyclic kainoid amino
acidg¢ isolable from the marine organisntzschia pungenand
Chondria armata Domoic acid has powerful neuroexcitatory
properties, and isodomoic acids are insecticiddbomoic acid and

the isodomoic acids have, on occasion, been found in the edible

parts of the musseMytilus edulis?® posing a threat to both humans
and marine mammals and birei$he syndrome known as amnesic
shellfish poisoning has been ascribed to ingestion of shellfish con-
taining domoic and isodomoic acidlend there have been numerous
recent developments in methods for analysis of domoic &cid.
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Domoic acid has been synthesized on one occa8iand only
one of the family of isodomoic acids, isodomoic acid G, has so far
been madé though domoic acid has been isomerized photochemi-
cally to a mixture of the isodomoic acidsmoreover, Baldwit?

Scheme 1. Asymmetric Dearomatizing Cyclization?
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aReagents: (ip-MeOGH4COCI, EgN, CH,Cly, 0 °C; (ii) NaH, DMF,
BnBr; (iii) 6, THF, —78 to 20°C; (iv) HCI, H20; (v) recryst (EtOAcC).

of a mixed cuprate formed from the protected iodo alco&ol
yielding ketoned in 79% yield as a single diastereoisomer. Although
inconsequential for the synthesis overall, we assumefiatms
with the stereochemistry shown, by virtue exo attack of the
cuprate on the bicyclic system. Removal of the cumyl protecting
group with formic acid’ led additionally to desilylation and formyl-
ation of the primary hydroxyl group. Reprotection of the secondary
lactam as arN-Boc derivative yieldedlO in 81% yield from9.

The benzyl group ob is essential for clean cyclization; few
alternative cyclizing groups are as effecti’e.However, the
resulting phenyl substituent requires conversion to the C2 carboxyl
group of the target, and the vigorously oxidizing conditions required
for such a reactiof leave little room for manoeuvre chemo-
selectively. KetonelO is one of few compounds in the synthetic
sequence in which chemoselective oxidation of Ph is feasible, and

has successfully synthesized a series of non-natural domoic acidy e aiment o0 with sodium periodate in the presence of catalytic

analogues! In this paper, we describe the first total synthesis of
(—)-isodomoic acid Cl in 15 steps from a simple aromatic amide
5. The key step in our strategy is the asymmetric dearomatizing
cyclization of thisN-benzyl benzamidé,'2 a reaction we have
employed in the synthesis of the structurally relatedtkainic acid

3.13 This work had shown that the stereochemistry of the bicyclic
product? of the cyclization was correct for the biologically active
kainoids} and that chemoselective Ru(VIIl) oxidation of the aryl
ring and regioselective BaeyeYilliger oxidation of the cyclo-

ruthenium(lll) chloride yielded, after methylation with trimethyl-
silyldiazomethane, estdrl. Reprotection of the primary hydroxyl
group with TBDPS gavéd 2

The way was now clear for cleavage of the six-membered ring
of 12, whosecis fusion with the lactam ring will generate the
necessargynrelationship between the C3 and C4 substituents of
isodomoic acid C. Following the preced&rthat similar 6,5-fused
systems undergo surprisingly regioselective Baey#ltiger oxida-
tion® we treated ketond?2 with mCPBA. As we had hoped,

hexanone ring accomplished two of the key transformations requiredlac,[One 13 was formed quantitatively as a single regioisomer.

for the conversion o¥ into a target kainoid.

To employ this cyclization in the synthesis of isodomoic acid
C, we made amidb from cumylaminé*4 on a 16-20 g scale and
cyclized itin 2.5 g batches. Treatment®in THF at—78 °C with
N-lithioamine6'® by our published methdéf promoted asymmetric
deprotonation and cyclization to an enol ether which was hydro-
lyzed'8 in situ to yield enon& (Scheme 1) in 86% ee (by HPLC).
Recrystallization of from ethyl acetate improved the enantiomeric
excess to>99%.

The reactivity of enon& allowed us to introduce a precursor to
the required side chain of isodomoic acid C by conjugate addition
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Careful methanolysis of lactonE3 by slow addition of sodium
methoxide avoided epimerization of the hard-earcezistereo-
chemistry and returned the hydroxyestet as the C3,C4is
stereoisomer.

Elimination of water froml4 to give the unsaturated compound
15was achieved via oxidation of the corresponding selenide using
the method of Griec&? Despite the presence of four carbonyl
groups in15, we found that the slow addition of DIBAL t&5 in
THF allowed the selective reduction of the amide carbonyl group,
and treatment of the product with triethylsilane and boron trifluoride
gave theN-Boc pyrrolidine16.

Elaboration to the isodomoic acid C side chain was achieved by
fluoride-promoted deprotection of the silylated hydroxyl group,

10.1021/ja042415g CCC: $30.25 © 2005 American Chemical Society
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Scheme 2. Synthesis of (—)-Isodomoic Acid C2
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aReagents: (i}-BuLi, —78 °C, EtO; (ii) MeLi, CuCN, EtO, —78 to
25 °C; (iii) 7, =78 °C; (iv) HCOH, reflux, 30 min; (v) BogO, E&N,
DMAP, CH.Cl,, 25°C, 18 h; (vi) NalQ, RuCk, H,0O, MeCN, EtOAc, 18
h; (vii) Me3SiCHN,, toluene, MeOH, 20C, 5 min; (vii) NaOMe, MeOH,
—78°C, 1 h; (ix) t-BuPhSICl, imid, CHCl, 20 °C, 18 h; (x)m-CPBA
(70%), CHCl,, 25 °C, 72 h; (xi) 0-NO,CsH4SeCN, BuP, THF, 20°C, 2
h; (xii) H20,, py, —40 to 25°C, 12 h; (xiii) i-Bu,AlH, PhMe, THF,—78
°C, 1 h; (xiv) E§SiH, BR;/OEY, —78°C, 2.5 h; (xv) BUNF, THF, 25°C,
2 h; (xvi) Dess-Martin, CHCl,, 25 °C, 30 min; (xvii) 18, DBU, LiCl,
MeCN, 25°C, 1 h; (xviii) LiOH, H2O, THF, 25°C, 12 h; (xix) CBRCOH,
CH.Cly, A, 2 h.

Dess-Martin?! oxidation to aldehydé7, and Hornet+Wadsworth-
Emmons olefination. Under Masamune’s conditiéh&7 reacted
with ethyl 2-triethylphosphonopropionaté8 to yield a single
stereoisomer of the trisubstituted alked®. Deprotection by
treatment with lithium hydroxide followed by trifluoroacetic acid

yielded, after purification by ion exchange and reverse-phase HPLC,

the target natural product-}-isodomoic acid Cl, [a]?% = —30
+ 10 (¢ = 0.02, HO) [lit.? [a]?% = —30 (¢ = 0.015, HO)].
Comparison of théH and13C NMR spectra of the product with
those of authentic naturally derived isodomoic acfd i@dicated
an exact match.
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